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Abstract—Accurate and efficient real-time simulation of non-
linear dynamic systems remains an important challenge in fields
such as robotics, control systems and industrial processes, requir-
ing innovative solutions for predictive modeling. In this work, we
introduce a novel recurrent neural network (RNN) architecture
designed to simulate complex nonlinear dynamical systems. Our
approach aims to predict system behavior at any time step
and over any prediction horizon, using only the system’s initial
state and external inputs. The proposed architecture combines
RNN with multilayer perceptron (MLP), and incorporates an
attention mechanism to process both previous state estimates and
external inputs. By training without teacher forcing, our model
can iteratively estimate the system’s state over long prediction
horizons. Experimental results on three public benchmarks show
that our method outperforms other state-of-the-art solutions.
We highlight the potential of our proposal for modeling and
simulating nonlinear systems in real-world applications.

Index Terms—Dynamical System, Recurrent Neural Network,
Attention, Hybrid Architecture, Real-Time Simulation, Training
Algorithm

I. INTRODUCTION

Simulation of dynamical systems in real-time is necessary
for various applications across different domains such as
robotics [1], [2], control systems [3], [4], finance [5], [6],
weather forecasting [7], [8], traffic forecasting [9], [10] and
health [11], [12], among others. The ability to accurately pre-
dict the behavior of these systems enables proactive decision-
making and effective control strategies. Traditional methods
often rely on mathematical models, which may become im-
practical or inaccurate in complex or dynamic environments.

Although traditional mathematical models are widely used,
they are often based on simplifying assumptions that may
not account for certain dynamics, resulting in unmodeled
behaviors. While these discrepancies may produce negligible
errors in short-term predictions, they can significantly affect
the accuracy of long-term forecasts. Consequently, there has
been a growing interest in leveraging neural networks (NN) to
simulate dynamical systems because of their ability to learn
complex patterns from data or to use these architectures as a
surrogate for computationally expensive physical models [13].

Among all types of NN, the use of recurrent neural networks
(RNN) stands out in the simulation of dynamical systems. In
the case of the control engineering, there are numerous works
that use different architectures with RNN in model predictive
control schemes. For example, Long Short-Term Memory

(LSTM) as a model of the motor [14], outperforms classi-
cal approaches in simulating nonlinear dynamical systems.
Another approach uses an LSTM architecture as a predictor
in a control scheme [15], in this case applied to a vehicle
velocity and position prediction problem. RNN are also used
for water level prediction [16]. These works show that RNN
can improve performance in control schemes with respect to
classical approaches. However, these works are focused on the
integration of these RNN in the control schemes and not on
minimizing the error of these architectures with respect to real
systems.

In robotics, there is also interest to simulate real-time
dynamical systems, where using RNN architectures can also
obtain good results. As a first example, we highlight the
integration of a hybrid architecture with RNN and Feedforward
NN in a control scheme of a robotic arm tasked to cut fruits
and vegetables [17]. In that work, however, the proposed
architecture is a one time step predictor as instabilities and
errors were found when it is used with a larger prediction
horizon. Another work shows how to model and control a
small helicopter using RNN [18], however, in robotics, the
trend in research is to use hybrid architectures where NN
are combined with physical models with knowledge of the
system. A hybrid model of classical identification techniques
and convolutional neural networks (CNN) models a helicopter
in [19], outperforming previous work in this domain. Using
LSTM architectures also works well for predicting the be-
havior of a quadrotor for a short prediction horizon of two
seconds [20]. A hybrid alternative is also presented in that
paper, in which physical models are included to improve the
overall accuracy of the system. The prediction of the behavior
of the same quadrotor was improved for a prediction horizon
of less than one second, by using a hybrid architecture of
NN and physical models [21]. In that example, CNN are
used instead of RNN, limiting in that case the solution to a
sequence-to-sequence approach. The potential of using NN as
surrogate models to simulate dynamical systems is shown in
[22]. In that paper, LSTM, hybrid CNN-LSTM architectures
and a Gaussian process regression organized in a nonlinear
autoregressive exogenous architecture (NARX) are compared.
In the experiments of that work, the NARX solution is shown
to be more stable and generally performs better than the
other proposed NN. A hybrid CNN-LSTM-MLP architecture
for one-hour-ahead solar irradiance forecasting is presented
in [24]. The hybrid architecture outperforms the alternatives
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TABLE I: Summary of relevant articles related to the simulation of dynamic systems using mainly NN-based techniques.

Reference Application Architecture Type Horizon
[14]–[16] Model Predictive Control LSTM Data-Driven Fixed

[17] Robotic Model and Control RNN-MLP Data-Driven Fixed
[18] Helicopter Model and Control RNN Data-Driven Fixed
[19] Helicopter Model and Control CNN Hybrid Model Fixed
[20] Quadrotor Multistep Prediction LSTM Hybrid Model Fixed
[21] Quadrotor Multistep Prediction CNN Hybrid Model Fixed
[22] Dynamical Systems Simulation NARX-NN Data-Driven Fixed
[23] Dynamical Systems Simulation MLP-CNN Data-Driven Fixed
[24] Solar Irradiance Forecasting CNN-LSTM-MLP Data-Driven Fixed
[25] Flood Forecasting Attention-LSTM Data-Driven Fixed
[26] Time Series Forecasting Attention-LSTM Data-Driven Fixed

[27], [28] State Estimation of Batteries Attention-LSTM Data-Driven Fixed
[29] System Identification With Outliers RFS-LSSVR Data-Driven Any (Test)
[30] System Identification S-REVARB Data-Driven Any (Test)
[31] System Identification With Outliers LMN Data-Driven Any (Test)

Ours Dynamical Systems Simulation MA-LSTM-MLP Data-Driven Any
(Train & Test)

that use only MLP or RNN. RNN not only have potential
in modeling dynamical systems, but can also be effectively
used in parameter identification problems [32]. Another work
compares the use of MLP and RNN to identify complex
nonlinear systems [23], finding that the best approach is to
use a hybrid solution with both architectures.

Although the NN structure of attention mechanisms can be
found in many applications, exploration is needed to effec-
tively include them in architectures for simulating dynamical
systems. These architectures are present in problems related
to sequence-to-sequence predictions or time series forecasting.
We highlight the work of [25], which proposes a hybrid archi-
tecture that uses attention with LSTM for flood forecasting.
The proposed architecture outperforms approaches that use
only MLP, LSTM or CNN. The limitation of the Attention-
LSTM architecture proposed in that paper is a sequence-to-
sequence approach, i.e., it predicts the flood for a fixed window
of time from another fixed-size window of observation. This
approach, although accurate for many scenarios, limits using
these architectures in real time and adapting to unexpected
changes, which is important when simulating a dynamical
system with external inputs. Another example of sequence-
to-sequence time series prediction is [26], where the proposed
evolutionary attention LSTM improves the results of using ba-
sic LSTM. A hybrid LSTM architecture with self-attention for
state estimation of lithium-ion batteries is used in [27]. That
example can be considered a dynamical system, controlled
by external inputs. The cited example predicts the state of
the battery for a fixed period of time, knowing the external
parameters for that period of time, leading the solution to a
sequence-to-sequence problem. The self-attention is applied
to the hidden states calculated by the LSTM layer, obtaining
better performance than using only LSTM layers. Another
work that also proposes a hybrid architecture of attention and
LSTM for state estimation of lithium-ion batteries is [28],
with the difference that in this case the self-attention layer is
positioned before the LSTM layer. The work of [33] presents a
solution that estimates attitude and position of shield machine
in tunneling from multiple inputs using a hybrid LSTM-
Attention architecture, again improving the results of using
only LSTM. These examples show how the capacity of RNN

can be improved using attention mechanisms. These results
motivate the development of these architectures for real-time
dynamical systems simulation problems.

In addition to the application of RNN for system identifi-
cation and modeling, other techniques are present in the state
of the art. Two novel least squares support vector regression
(LSSVR) models are proposed in [29], called Robust Fixed-
Size LSSVR (RFS-LSSVR) and Reweighted Robust Fixed-
Size LSSVR (R2FS-LSSVR). One of the main novelties is
that both architectures are robust to the presence of outliers
in the external inputs. Another example uses a Stochas-
tic Recurrent Variational Bayes (S-REVARB) framework for
identification and modeling of dynamical systems [30]. Local
model network (LMN) for the identification and modeling of
recursive dynamical systems has been studied in [31], again
showing robustness to outliers in the system inputs. These last
three examples have been tested in scenarios without a fixed
prediction horizon, also called free simulation, showing good
results. Although these architectures are trained in scenarios
where there is no feedback from the output to the input of
the next time step, they have shown good performance in free
simulation, where there is feedback.

State-of-the-art approaches using NN to simulate dynamical
systems have certain limitations that motivate the need for
further developments. Some important challenges are:

• Fixed prediction horizons: State-of-the-art approaches
usually operate with fixed forecast horizons, which limits
their adaptability to different scenarios. Working with
fixed prediction windows leads to sequence-to-sequence
approaches, which present limitations for real-time appli-
cations. This makes it difficult to use these architectures
to monitor the system in real time or to easily adapt to
unexpected changes.

• Hybrid physical architectures: While hybrid architec-
tures incorporating physical models and NN have shown
success, they might not be universally applicable, es-
pecially when the underlying physics of a system is
unknown.

• Novel NN approaches: State-of-the-art solutions are lim-
ited to working with different RNN structures. Attention
is present in the state of the art of many applications,
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especially where data sequences are involved. Simulation
of dynamical systems presents sequences of data, and
incorporating attention mechanisms into the architectures
has not been explored.

Table I shows a summary of relevant articles related to
the simulation of dynamic systems using mainly NN-based
techniques. In addition to the references, it shows the ap-
plication domain, the architecture used, whether the method
is data-driven or a hybrid of a physical model with NN
(Hybrid Model), as well as if the proposal has been tested
in scenarios with or without a fixed prediction horizon. Note
that in the architecture category the use of Attention or Multi-
Head Attention (MA) is highlighted.

In view of the review of the state of the art, and the chal-
lenges presented, the research gaps that this paper aims to fill
are: There is no NN architecture based on the combination of
attention, RNN and MLP techniques. Data-driven architectures
are needed to facilitate generalization to any dynamic system
for which data is available. In addition, applications require
architectures that operate without a prediction horizon in the
testing and training phases, training themselves with feedback
from their own predictions with a custom algorithm.

The context of this paper is the simulation of dynamical
systems with external inputs, where only the initial state of
the system at any time step is known, and external inputs
can be received in real time or from a time sequence of any
length. The challenge is to develop an architecture that can
handle any prediction horizon, allowing both short-term and
long-term simulations. In addition, the architecture must be
able to operate in real time, adapting to external inputs as
they are received. Our main contributions are:

• We propose an architecture that runs iteratively, allowing
the dynamical system to be predicted for any prediction
horizon when external inputs are known. Moreover, the
architecture adapt to real-time scenarios, taking inputs
dynamically to provide on-line predictions. To make this
approach work, a customized algorithm based on training
without teacher forcing has been implemented.

• Our proposed hybrid architecture, called MA-LSTM-
MLP, involves LSTM and MLP with attention mecha-
nisms. This architecture integrates attention mechanisms
to exploit historical information on external inputs and
system state estimations. This hybrid architecture outper-
forms the same architecture without attention.

• Our architecture works as a black box, eliminating the
need for detailed knowledge of the underlying physical
system. This feature allows its application to any system
for which we can have a database with the evolution of
its states and the external inputs applied.

• We evaluate the performance of the proposed architecture
using public benchmarks for nonlinear dynamical systems
with external inputs, comparing the results with state-of-
the-art approaches.

II. PRELIMINARIES

This section defines the problem of simulating dynamic
systems and presents the minimal RNN architecture that meets

the basic requirements. Consider the state of a dynamical
system at a time instant t by yt ∈ Rm, and the external inputs
at t by ut ∈ Rn. Consider a function f that estimates the state
of the dynamical system at the next time instant ŷt+1 from ut

and ŷt:
ŷt+1 = f(ut, ŷt) (1)

Simulating dynamical systems aims to calculate over a time
period T its state evolution Y1,T ∈ Rm×T

Y1,T = [y1, y2, . . . , yT ]. (2)

Knowing y0, and the external inputs over the entire time
period U0,T−1 ∈ Rn×T

U0,T−1 = [u0, u1, . . . , uT−1], (3)

function f can be iterated T times until getting an estimate
Ŷ1,T ∈ Rm×T

Ŷ1,T = [ŷ1, ŷ2, . . . , ŷT ]. (4)

Note that y0 can be the state of the dynamical system at any
instant of its execution, this will be the known initial state from
which our simulation will start. In the same way, T will depend
on how many future external inputs are known, allowing to
adapt any value. The main problem to be solved in this paper
is to obtain a function f using RNN that minimizes the error
between Y1,T and Ŷ1,T .

There are several reasons to seek a function that calculates
only the state of the system at the next time instant and follows
an iterative approach to simulate the behavior of the system
over time. This is in contrast to employing a function for
multistep prediction, where the time length of the external
inputs and the prediction horizon is fixed.

• Generalization to any prediction horizon: An iterative
approach allows for flexibility in predicting the system’s
behavior over different time horizons. By adjusting the
number of iterations, the architecture can be applied to
short-term or long-term simulations, providing a versatile
solution for various forecasting needs or depending on the
number of known external inputs.

• Real-time applications: This approach allows to simu-
late the behavior of the dynamical system by receiving the
external inputs in real time, which allows to monitor the
state of the system and to adapt to unexpected changes.

• Reduced computational complexity: Estimating states
iteratively allows computationally less demanding archi-
tectures. This approach significantly impacts memory
efficiency, particularly with longer prediction horizons,
avoiding the need to load all external inputs into memory
at once or calculate all states simultaneously.

Now we will describe the minimal NN architecture that
meets the requirements of this paper. Feedforward NN have
been widely used in control problems of dynamical systems
[34]–[37]. However, these networks lack memory and cannot
model dynamics on their own, so they cannot be used to
simulate dynamical systems, they can only be used as single-
step predictors [38], [39]. A NN structure suitable for the
problem presented in this paper is Nonlinear AutoRegressive
with eXogenous inputs Neural Network (NARX-NN) [40],
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Fig. 1: Diagram of the NARX-NN architecture. The architec-
ture uses a MLP to estimate ŷt+1 from k past external inputs
u and k past state estimates ŷ.

[41], since it has buffers to store information and is a structure
with recurrent connections to model dynamics.

In NARX-NN there is a nonlinear function f that estimates
the next system state ŷt+1 from buffers that store the k
previous system states Ŷt−k,t and the k past external inputs
Ut−k,t:

ŷt+1 = f(ut, ut−1, . . . , ut−k, ŷt, ŷt−1, . . . , ŷt−k) (5)

This architecture consists of these buffers, called tapped
delay lines (TDL), and a multilayer perceptron (MLP) with
a recurrent connection between the network output and input
[42]. For a MLP with L layers, where l = 1, . . . , L, the output
of a layer l at time step t is represented by xl

t, computed as
follows:

xl
t = σ(W lxl−1

t + bl) (6)

where W l and bl are the weight matrix and the bias vector
of the l-layer, respectively. σ is the activation function applied
element-wise. x0

t is the concatenation of Ŷt−k,t and Ut−k,t.
Note that ŷt+1 = xL

t .
This architecture, although it is the simplest of those to

be shown in this paper, is present in the state of the art
of simulation of different dynamical systems [43]–[46]. In
this paper, it is the baseline to compare with our proposed
architecture. A diagram of the NARX-NN is shown in Fig. 1.

III. PROPOSED ARCHITECTURE

This section describes the NN architecture and training algo-
rithm proposed for the simulation of dynamical systems. The
implemented architecture fulfill the requirements described in
this paper. Their function is to simulate dynamical systems
with external inputs, iteratively to enable their use in real time
and for any prediction horizon.

A. LSTM-MLP

Before presenting the complete proposed architecture, in
this subsection we will introduce the architecture without the
attention structure. In this way, we will introduce all the parts

of the hybrid solution so we can compare the final version
with this intermediate architecture.

RNN are ideal architectures for representing dynamical sys-
tems. These architectures are designed to work with sequences
of data, allowing to capture temporal dependencies with their
hidden states h and use these to estimate the future states of the
dynamical system. RNN consist mainly of two steps: Hidden
state update ht and output generation ŷt+1:

ht = f(ht−1, xt) (7)

ŷt+1 = g(ht, xt) (8)

where in our context, with a single hidden layer and without
TDL buffers, xt is the concatenation of ut and ŷt, ht and ŷt
are the hidden state of the RNN and the estimated state of
the dynamical system respectively. The functions f and g will
depend on the chosen RNN architecture.

Traditional RNN suffer from the vanishing and explod-
ing gradient problems, limiting their ability to capture long-
term dependencies in sequences. Therefore, more complex
architectures were introduced to avoid this problem, such
as LSTM [47]. LSTM not only uses hidden states, but it
also incorporates memory cells c, allowing them to capture
and remember information over long sequences. The LSTM
architecture involves updating c and h using a set of gates,
including an input gate, forget gate, and output gate. These
gates regulate the information flow, enabling LSTMs to selec-
tively remember or forget information. With a single hidden
layer and without TDL buffers, the LSTM equations in our
context are as follows:

it = σ(Wxixt + bxi +Whiht−1 + bhi)

ft = σ(Wxfxt + bxf +Whfht−1 + bhf )

ot = σ(Wxoxt + bxo +Whoht−1 + bho)

c̃t = tanh(Wxgxt + bxg +Whght−1 + bhg)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(9)

where it, ft and ot are the input gate, forget gate and output
gate at time instant t. c̃t and ct are candidate cell state and cell
state respectively, and ht is the hidden state. σ represents the
sigmoid activation function, and tanh is the hyperbolic tangent
activation function. W and b are weight matrices and bias
vectors, respectively. ⊙ represents the element-wise product.
Note that ht is also the output of a LSTM cell.

There are two approaches to handle hidden states in LSTMs:
stateful and stateless. In the stateless approach, after each use
of the NN, the hidden states are reset. While in the case of
the stateful approach, we control when these hidden states are
restarted. Using stateless LSTM has benefits when we know
the prediction horizon, as it allows us to fix this parameter
and to parallelize and speed up the training. In our case, since
we use the NN iteratively, we generate a single output in each
iteration, so we want the hidden state of the LSTM layers
to be kept and updated for the duration of the simulation of
the dynamical system. This is why we decided to work with
stateful LSTM.
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Fig. 2: Schematic of the hybrid LSTM-MLP architecture. At an instant t, the input are the external inputs ut and the past state
estimation ŷt. These two vectors are stacked into x1

t , and this is the input of the LSTM stateful layer along with the hidden
states from the previous iteration ht−1 and ct−1 The LSTM layer captures long-term dependencies and relevant information.
The output of the LSTM layer, x2

t , is the input of the MLP.Note that x2
t = ht. The MLP output is the state of the dynamical

system at the next time instant ŷt+1.

During the experimentation we observed that in our context
using only LSTM layers works well, but it is possible to
improve the accuracy and reduce the number of parameters
with a hybrid LSTM-MLP approach (Fig. 2), with a single
LSTM layer. The intuition behind this hybrid approach is
that the LSTM layer captures long-term dependencies and
information, while the MLP is responsible for interpreting the
non-linearities of the dynamical system and predicting the next
time instant.

At an instant t in the LSTM-MLP architecture, the inputs
are ut and ŷt. These two vectors are stacked into x1

t , and
this is the input of the LSTM stateful layer along with the
hidden states from the previous iteration ht−1 and ct−1. The
output of the LSTM layer, x2

t , is the input of the MLP. Note
that x2

t = ht. The MLP output is the state of the dynamical
system at the next time instant ŷt+1.

B. MA-LSTM-MLP
Using TDLs in the input of the NARX-NN architecture is

necessary to obtain good performance, since it is the memory
mechanism. In the case of the LSTM-MLP architecture, it is
not necessary to include TDLs to obtain good performance
since the LSTM layer incorporates memory. However, the
prediction capability of RNN can be improved by including
these buffers [20].

In our experiments, we have observed that it is difficult to
define the appropriate size of these TDLs, observing that often
the NN struggles to effectively utilize the information from
TDLs. The effectiveness of TDLs also can vary depending
on the specific characteristics of the dynamical system being
simulated. In order to effectively utilize the information from
TDLs regardless of its size, we propose to include a Multi-
Head Attention layer in the architecture to improve the ability
to capture relevant temporal dependencies.

Attention mechanisms have gained significant importance in
diverse domains, revolutionizing NN architectures. Originally
introduced in the context of natural language processing (NLP)

[48], attention mechanisms, notably popularized by their in-
corporation into the transformer architecture, have since then
found applications in diverse fields, ranging from computer
vision to time series forecasting [49]–[51]. The fundamental
idea behind attention is to allow NN to dynamically focus on
specific elements within a sequence, assigning varying degrees
of importance to each element based on its relevance to the
task on which the architecture has been trained.

The attention mechanism involves three key components:
queries Q, keys K, and values V . Consider xt ∈ R(n+m) as a
vector with information at time t. Given a sequence of vectors
X1,T ∈ R(n+m)×T of length T

X1,T = [x1, x2, . . . , xT ], (10)

the transformation of these vectors into Q ∈ Rdq×T , K ∈
Rdk×T , and V ∈ Rdv×T involves linear projections:

Q = WqX

K = WkX

V = WvX

(11)

where Wq ∈ Rdq×(n+m) , Wk ∈ Rdk×(n+m), and Wv ∈
Rdv×(n+m) are weight matrices. dq , dk and dv are the di-
mension vectors of query, key and value respectively. In our
implementation they are a hyperparameter to be optimized,
chosen to be the same value to maintain consistency:

dq = dk = dv (12)

Once Q, K, and V are obtained, attention is computed as a
weighted sum of the values, where the weights are determined
by the compatibility of queries and keys:

A = softmax
(
QTK√

dk

)
(13)

where A ∈ RT×T is the attention matrix. Each row contains
the relative importance of the other states with respect to that
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Fig. 3: Diagram of the Multi-Head Attention layer in our context, where Xt−k,t represents the TDL buffers at time t. The
output is the attention matrix, MultiHead(Xt−k,t), which dynamically adjusts the influence of each time step based on its
relevance to the simulation task.

Fig. 4: Schematic of the MA-LSTM-MLP architecture. The Multi-Head Attention layer (Fig. 3) allows to dynamically focus
on specific elements within TDL buffers.

specific state. Finally, we calculate the Attention ∈ Rdv×T by
weighting the matrix A with V :

Attention(Q,K, V ) = V A (14)

Note that we derived Q, K, and V from the same sequence
X . This attention approach is referred as self-attention, al-
lowing the architecture to weigh the importance of different
elements within the same input sequence.

In our architecture we have used Multi-Head Attention.
Multi-Head Attention, also introduced in [48], is an extension
of the attention mechanism that operates with h sets of queries,
keys, and values:

MultiHead(X) = WoConcat(head1, head2, . . . , headh)
where headi = Attention(WqiX,WkiX,WviX)

(15)

where Wqi ∈ Rdqi×(n+m), Wki ∈ Rdki×(n+m) and Wvi ∈
Rdvi×(n+m) are weight matrices of the i-th head. For sim-
plicity, dqi = dq/h, dki = dk/h and dvi = dv/h. The
output of the MultiHead ∈ Rdv×T is obtained concatenating
the results of each head and linearly projecting them using

Wo ∈ Rdv×h·dvi . The idea of Multi-Head Attention is to
allow the architecture to pay attention different parts of the
input sequence with respect to distinct aspects, enhancing its
capacity to capture diverse relationships within the data.

The intuition behind using attention in our context is that
it allows the architecture to dynamically focus on specific
elements within the TDL, assigning different levels of im-
portance to each element during the prediction process. This
adaptive weighting of information proves to be beneficial in
scenarios where the importance of past states and inputs varies
over time. As a result, the attention layer ensures a context-
aware utilization of the TDL information, leading to improved
accuracy and robustness across diverse dynamical systems.

In the context of our simulation problem, the input sequence
of vectors Xt−k,k ∈ R(n+m)×k represents the TDL buffers at
time t, which includes both k past system states estimations
ŷ and external inputs u:

Xt−k,t = [xt−k, xt−k+1, . . . , xt],

where xi = Concat(ui, ŷi).
(16)
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Once the Multi-Head Attention layer that processes the TDL
buffers has been defined, we can integrate this layer with the
LSTM-MLP to create the MA-LSTM-MLP architecture. Fig.
3 shows a schematic of the Multi-Head Attention layer, where
the input is Xt−k,t and generates the output attention matrix.
A schematic of the complete proposed architecture is shown in
Fig. 4. In the schematic, the input matrix for the Multi-Head
Attention layer is shown as X1

t . Note that X1
t = Xt−k,t. The

attention layer output matrix X2
t = MultiHead(Xt−k,t) is con-

catenated with the original input matrix X1
t and transformed

into a 1D feature vector x1
t , which will be the LSTM layer

input. Experimentation showed that combining the original
information with the output of the attention layer improved the
architecture’s predictions. The architecture continues to run as
the LSTM-MLP, detailed in Section III-A.

C. Training algorithm

The NN architecture described in the previous section, as
well as the baseline model (Section II), can be considered
RNN in which each iteration depends on the prediction of
the previous time step. To train these architectures with this
iterative approach, there are two possibilities: Train with
teacher forcing (TF) or train without teacher forcing (no-TF)
[52]. This is also known in the literature as Series-Parallel and
Parallel [42]. The TF training approach involves using the true
system states from the previous time step during training. The
equation for updating the system states during training with
TF is as follows:

ŷt+1 = f(ut, yt) (17)

where true system state yt is used. This approach simplifies
training as it allows the architecture to learn the relationships
between inputs and outputs directly.

In the no-TF training approach, the architecture is trained
with its own predictions from the previous time steps ŷt. The
training equation aligns with the simulation equation used
during inference (Equation 1).

Training with TF has some advantages, the main one being
its shorter training time and simplicity. However, architectures
are actually trained for single-step predictions, and their in-
ference error increases greatly with long prediction horizons.
TF and no-TF training has been studied in chaotic time series
prediction [53], [54]. These can be considered as dynamical
systems, but without external inputs, since the evolution of
the system depends only on the initial conditions. In these
cases, the benefit of training with no-TF has been proven.
Training with no-TF is more challenging and computationally
demanding, as the architecture needs to be iteratively updated
based on its own predictions. However, this approach aligns
the training process more closely with the inference scenario,
making the architecture more robust for longer prediction
horizons.

In our experiments, we observed that no-TF training resulted
in better accuracy and robustness in the proposed RNN archi-
tecture for simulating dynamical systems with external inputs,
particularly over longer prediction horizons.

TABLE II: Hyperparameters of our RNN architectures, includ-
ing those related to training.

Symbol Hyperparameter Type
k TDL buffer size Architecture
L Number of hidden layers in the MLP Architecture
σ Activation function in the MLP Architecture

HM Neurons per hidden layer in the MLP Architecture
HL Cells in the LSTM layer Architecture
h Number of heads in the Attention layer Architecture
dk Key vector dimension in the Attention layer Architecture
e Number of epochs Training
B Batch size Training
η Learning rate Training
J Cost function Training
s Early stop Training

D. Architecture hyperparameters

In the previous sections, two RNN architectures have been
presented: the NARX-NN, from the state of the art (Section II),
and our proposed architecture, the MA-LSTM-MLP (Section
III-B). These architectures, together with the training algo-
rithm, present a series of hyperparameters to be optimised
during the NN training process. The hyperparameters used
are detailed in Table II, specifying if they are parameters
corresponding to the architecture or to the training algorithm.

In our MA-LSTM-MLP architecture, as well as in its
variation without the attention layer, only one LSTM layer is
included, as experimentation showed that adding more layers
did not improve performance. The activation functions of the
LSTM layer, as detailed in Section III-A, are the sigmoid
and hyperbolic tangent activation functions. Other activation
functions were tested with worse results.

In the attention layer only the number of heads and the
key dimension are defined. The query and value dimension
will depend on the input vector. Training with batches and
parallelisation is complicated when training with no-TF and
stateful RNN. However, we can parallelise the training by
processing a number of different runs of a dynamical system at
the same time, as long as a prediction horizon is fixed during
training. Batch size B represents the number of runs that are
processed in parallel during training.

Implementing the proposed architecture, as well as the
baseline, with the constraints and requirements stated in this
paper such as the combination of different types of layers and
the iterative approach, is not trivial. The architectures have
been developed using Keras [55] with Tensorflow [56]. The
training algorithm must also be implemented with Tensorflow,
as there are no functions that allow us to train with no-TF
by default. In addition, the design of the architecture and the
training algorithm must support the proposed batch training,
allowing several systems to be simulated simultaneously.

IV. RESULTS AND DISCUSSION

In this section, the results of the proposed RNN applied to
public datasets of nonlinear dynamical systems is presented.
Furthermore, qualitative and quantitative comparisons between
the results obtained on the test data and the state-of-the-art
solutions are provided.
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A. Metrics

This section defines the metrics to be used to evaluate the
performance of the architectures during training and testing.
The objective of the metrics is to evaluate the predictions of the
architecture during N time instants Ŷ1,N with respect to the
real values Y1,N . The chosen metrics are Mean Square Error
(MSE), Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Normalized Root Mean Square Error (NRMSE), R2

and Cumulative Absolute Error (CAE).
MSE is a metric typically used as a loss function in NN

training. The problem with this metric is its interpretability,
as it does not respect the original units and is sensitive to
outliers.

MSE(Y1,N , Ŷ1,N ) =
1

m ·N

m∑
j=1

N∑
i=1

(yji − ŷji )
2 (18)

MAE is another commonly used metric that measures the
average magnitude of the errors in a set of predictions. It is
more interpretable in terms of the original units of the data
and is less sensitive to outliers compared to MSE.

MAE(Y1,N , Ŷ1,N ) =
1

m ·N

m∑
j=1

N∑
i=1

|yji − ŷji | (19)

Again, RMSE is an easier metric to interpret, as it respects
the original units of the data and is less sensitive to outliers.

RMSE(Y1,N , Ŷ1,N ) =

√√√√ 1

m ·N

m∑
j=1

N∑
i=1

(yji − ŷji )
2 (20)

R2 measures the proportion of the variance in the true values
Y1,N that capture the predictions Ŷ1,N of the architecture. It
ranges from 0 to 1, where 1 indicates a perfect fit.

R2(Y1,N , Ŷ1,N ) = 1−
∑m

j=1

∑N
i=1(y

j
i − ŷi

j)2∑m
j=1

∑N
i=1(y

j
i − Ȳ j

1,N )2
(21)

Note that Ȳ j
1,N is the mean of parameter j of the N true

samples:

Ȳ j
1,N =

1

N

N∑
i=1

yji (22)

The NRMSE considers the errors relative to the standard
deviation of the true values. It provides a normalized measure
of the model’s performance, making it easier to compare
across different datasets.

NRMSE(Y1,N , Ŷ1,N ) =

√√√√ 1

m ·N

m∑
j=1

N∑
i=1

(
yji − ŷji
σj
1,N

)2

(23)
Note that the standard deviation σj

1,N is calculated for each
parameter j over the N time instants:

σj
1,N =

√√√√ 1

N

N∑
i=1

(yji − Ȳ j
1,N )2 (24)

CAE is a metric that evaluates the overall accuracy of a
prediction. It is especially useful if it is calculated for all time
steps of the prediction horizon, which allows to observe the
error stability of the evaluated architecture.

CAE(Y1,N , Ŷ1,N ) =
1

m

m∑
j=1

N∑
i=1

|yji − ŷji | (25)

All the metrics presented obtain a single value for the m
parameters of a dynamical system. We can also use these
metrics individually for each parameter of the system, where
m = 1.

B. Wiener-Hammerstein Process Noise System

The Wiener-Hammerstein Process Noise System dataset
[59] consists of a collection of one-dimensional input-output

data from an electrical circuit. The complexity of the system
consists of a Wiener-Hammerstein model, characterised by
the presence of a non-linearity between two linear dynamical
systems. Furthermore, noise is introduced before the nonlinear
system, complicating the challenges associated with system
identification and modeling. The noise is a filtered white Gaus-
sian noise sequence. The filtered noise is generated starting
from a discrete-time 3rd order low-pass Butterworth filter
followed by a zero-order hold reconstruction and an analog
low-pass reconstruction filter with a cut-off frequency of 20
kHz.

The test data consists of two executions of the system
during 16,384 time steps, one execution of the system with
a multisine input and the other with a swept sine input. The
training data consists of 200 realizations, where in each run
the execution time varies from 4,096 to 65,536 time steps.
During the training phase, a prediction horizon of 2,048 time
steps has been set. Having a fixed prediction horizon during
training helps to parallelize the training. A 10% of the training
data was used as validation.

An effort has been made to make a fair comparison between
the baseline and the proposed architecture. Therefore, the
architectures have been trained with the same hyperparameters
related to the training, and the number of parameters of
the architectures are in the same order of magnitude. These
training hyperparameters were selected through a grid search
(Table III). Adam has been chosen as the optimizer [60].

The strategy for the hyperparameters related to the ar-
chitecture was as follows. A gridsearch was performed for
the NARX-NN architecture. For the case of the LSTM-MLP
architecture, we found the best performance by keeping the
hyperparameters of the NARX-NN architecture for the MLP,
reducing L to 2, and adding an LSTM layer. For the LSTM-
MLP architecture, we studied the variants of including TDL
with k = 10 and using the architecture without TDL. For
the MA-LSTM-MLP architecture, the optimal configuration
was found by starting from the LSTM-MLP structure with
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TABLE III: Hyperparameters of the three architectures and their training configurations for the Wiener-Hammerstein
Benchmark, including the specific values explored during the grid search.

Architecture Hyperparameter Value Search Space

NARX-NN

TDL Buffer Size k 10 {1, 5, 10, 15}
MLP Hidden Layers L 3 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 128 {32, 64, 128, 256}

LSTM-MLP

TDL Buffer Size k 10 or 0 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 128 {32, 64, 128, 256}

LSTM Cells HL 64 {32, 64, 128}

MA-LSTM-MLP

TDL Buffer Size k 10 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 128 {32, 64, 128, 256}

LSTM Cells HL 64 {32, 64, 128}
Heads h 4 {2, 4, 8}

Key Vector Dimension dk 8 {4, 8, 16}

Training

Epochs e 200 {100, 200, 300}
Batch Size B 16 {8, 16, 32}

Learning Rate η 1e-4 {1e-5, 1e-4, 1e-3}
Cost Function J MSE {MSE, R2}

Early Stop s 3 {3, 5, 10}

TABLE IV: RMSE obtained in the Wiener-Hammerstein
Benchmark with different architectures. The proposed MA-
LSTM-MLP architecture outperforms the alternatives. The
value in bold shows the best result.

Architecture RMSE
NARX-NN, k = 10 (Baseline) 0.0633

LSTM-MLP, k = 0 0.0254
LSTM-MLP, k = 10 0.0225

MA-LSTM-MLP, k = 10 0.0208
STORN [57] 0.0425

STORN with BiGRU [58] 0.023

TDL and adding a Multi-Head Attention layer. The specific
hyperparameter values for the MA-LSTM-MLP and for the
other architectures are summarized in Table III.

Table IV shows the RMSE obtained in the Wiener-
Hammerstein benchmark with the baseline, the proposed ar-
chitecture and state-of-the-art NN-based solutions. The reason
for using RMSE is that it is the recommended metric of this
benchmark to measure performance. The RMSE shown is the
error obtained by predicting the 16,384 time instants of the two
test scenarios and averaging the result. In our experiments, the
predictions are made knowing only the state of the system at
the initial time instant y0 and iterating the architecture for each
of the external inputs U0,T−1 for the whole prediction horizon
T , which is 16,384 in this case. As can be seen, the proposed
MA-LSTM-MLP architecture obtains lower error compared to
the rest of the alternatives. The LSTM-MLP architecture also
achieves a good result with and without TDL, outperforming
the baseline NARX-NN architecture.

The Wiener-Hammerstein Process Noise System benchmark
has been widely used in the literature as a test for the
simulation of nonlinear systems. In black box modeling, the
work of [57] compares different NN architectures applied in
this benchmark, obtaining the best results using the Stochastic
RNN (STORN) architecture [61]. STORN obtained an RMSE
of 0.0425, being outperformed by the MA-LSTM-MLP archi-

tecture proposed here.
In [58] it is proposed to use Bidirectional Gated Recurrent

Unit (BiGRU) in the STORN architecture, instead of using
basic RNN. The main advantage of Bidirectional RNN is that
they not only use current and past external inputs in each
iteration, but also analyze future inputs. The problem with
using future inputs is that we would not meet the requirements
described in our paper: The architecture could not be used
to monitor the system in real time, and would not be able
to adapt to unexpected external changes. Using STORN with
BiGRU is a state-of-the-art black box modeling solution in
the Wiener-Hammerstein Process Noise System benchmark,
with an RMSE of 0.023. Our MA-LSTM-MLP architecture
reduces this error to 0.0208 and do not use future inputs for
the estimation of each time step.

A comparison between the MA-LSTM-MLP and baseline
predictions with the actual system state in the first 2048 time
steps of the two benchmark tests is shown in Fig. 5. This figure
also shows the evolution of the CAE of the baseline and the
MA-LSTM-MLP architecture over the prediction horizon for
both benchmark scenarios. The MA-LSTM-MLP architecture
produces a negligible error compared to the real system
states in both benchmark scenarios, outperforming the baseline
architecture in both cases. The baseline architecture performs
a prediction with noise and errors in the Multisine benchmark
case. The Swept sine benchmark scenario is simpler, and the
baseline model also performs correctly during most of the
simulation, however, this architecture shows perceptible errors
in the first 200 time steps and from time step 1,700 onwards,
while the MA-LSTM-MLP maintains a negligible error during
the entire system simulation. Observing the evolution of the
CAE during all time steps, it is confirmed that our proposed
architecture is robust to long prediction horizons. It can be
seen in both scenarios how the CAE in the MA-LSTM-MLP
case grows approximately linearly and stably over the time
steps, indicating that the absolute error at each time step is
low and approximately constant. In the baseline architecture,
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(a) Prediction and CAE of the first 2048 time steps of the Wiener-Hammerstein Multisine Benchmark with the baseline architecture and the
proposed MA-LSTM-MLP.
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(b) Prediction and CAE of the first 2048 time steps of the Wiener-Hammerstein Swept sine Benchmark with the baseline architecture and
the proposed MA-LSTM-MLP.

Fig. 5: Prediction and CAE of the proposed MA-LSTM-MLP architecture and the baseline for the first 2048 time steps of the
Multisine (5a) and the Swept sine (5b) Benchmark. The MA-LSTM-MLP architecture produces a negligible error compared
to the true state of the system, outperforming the baseline which has higher noise and error prediction.

the CAE is higher throughout the prediction horizon and is also
unstable, growing more as the prediction horizon increases.

C. Industrial Robot

The Industrial Robot benchmark [62] consists of data
collected from a KUKA KR300 R2500 ultra SE industrial
robot, which has a nominal payload capacity of 300 kg and
a reach of 2500 mm. The dataset has 43,622 time steps with
a sampling rate of 10 Hz. At each time instant, we have the
information of six motor torques τ [Nm] and six joint positions
q [deg]. The experimental design incorporates 36 different
robot trajectories, executed twice, to ensure repeatability.
These trajectories were optimized under physical constraints
such as position, velocity, acceleration, and jerk limits. Data
post-processing includes filtering and resampling to 100 ms
intervals. The simulation problem consists in estimating at
each time instant the joint position from the motor torques.

This benchmark consists of a problem with highly nonlinear
dynamics, and it is a complex system with multi-input and
multi-output. Another major difficulty of the benchmark is that
it is easy to over-fit the solutions to the training data.

The test data consists of 3,635 time steps. The remaining
39,987 time steps have been divided, using 36,387 for training

and 3,600 for validation. During the training phase, in order to
be able to parallelize the training, a prediction horizon of 600
has been set, dividing all time steps into series of this length.

To make the comparisons between the proposed architecture
and the baseline, the same hyperparameters related to the
training have been used and the number of parameters of the
proposed network are in the same order of magnitude (Table
V). Adam has been chosen as the optimizer.

The strategy for choosing the hyperparameters related to
the architecture was similar to the previous example. First, a
gridsearch was performed to fit the NARX-NN architecture
and then those parameters were kept in the MLP layers
and the rest of the hyperparameters were optimized for the
LSTM-MLP and MA-LSTM-MLP architectures. The final
hyperparameters values for the architectures for the Industrial
Robot Benchmark are summarized in Table V.

Table VI shows the NRMSE obtained with the architec-
tures developed in the Industrial Robot benchmark test data.
NRMSE has been used since it is the recommended metric
in this benchmark. The NRMSE shown is the error obtained
by predicting the 3,635 time steps of the test data. As in the
previous example, all prediction is performed knowing only
the state of the robot at the initial instant y0 and iterating the
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TABLE V: Hyperparameters of the three architectures and their training configurations for the Industrial Robot Benchmark,
including the specific values explored during the grid search.

Architecture Hyperparameter Value Search Space

NARX-NN

TDL Buffer Size k 10 {1, 5, 10, 15}
MLP Hidden Layers L 3 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 512 {128, 256, 512}

LSTM-MLP

TDL Buffer Size k 10 or 0 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 512 {128, 256, 512}

LSTM Cells HL 128 {64, 128, 256}

MA-LSTM-MLP

TDL Buffer Size k 10 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 512 {128, 256, 512}

LSTM Cells HL 128 {64, 128, 256}
Heads h 8 {4, 8}

Key Vector Dimension dk 24 {8, 16, 24, 32}

Training

Epochs e 200 {100, 200, 300}
Batch Size B 6 {2, 3, 6}

Learning Rate η 1e-4 {1e-5, 1e-4, 1e-3}
Cost Function J R2 {MSE, R2}

Early Stop s 5 {3, 5, 10}

TABLE VI: NRMSE obtained in the Industrial Robot Bench-
mark with different architectures. The proposed MA-LSTM-
MLP architecture obtains the best results. The value in bold
shows the best result.

Architecture NRMSE
NARX-NN, k = 10 (Baseline) 0.146

LSTM-MLP, k = 0 0.158
LSTM-MLP, k = 10 0.142

MA-LSTM-MLP, k = 10 0.125

architecture for each of the external inputs of U0,T−1. We can
observe how the architecture that obtains more error is the
LSTM-MLP with k = 0, indicating that in this dataset it is
relevant to have a TDL buffer with the last estimated states of
the system. The LSTM-MLP architecture with k = 10 slightly
reduces the error obtained by the NARX-NN architecture with
the same TDL size. As in the previous case, exploiting the
potential of using TDL buffers, the proposed MA-LSTM-MLP
architecture obtains the least NRMSE.

In Fig. 6 the prediction of the MA-LSTM-MLP and baseline
architectures for 600 random time steps in the test data is
shown, compared to the true six joint position. The proposed
architecture has a small error with respect to the real states
of the system, while the baseline solution has more error
and noise in its predictions. The CAE has been calculated
individually for each of the six joint positions, showing that
the proposed model is more robust and obtains less error over
the entire prediction horizon. In the baseline case, the CAE
is higher along all time steps, and the difference increases as
this prediction horizon increases.

With this dataset, in the context of multistep prediction with
NN, the previous work of [63] has to be highlighted. This
work proposes Recurrent Linear Parameter-Varying Networks
(ReLiNet), an RNN with faithful explanations and stability
guarantees. In addition, in that paper, they also use LSTM as
baseline to compare their proposal. The multistep prediction
tests are performed in that paper with the following conditions:

The previous 60 time steps are known, both the system
state and the external inputs, and the next system states
are predicted from the next 60 external inputs. With this
context in the Industrial Robot benchmark, ReLiNet and the
LSTM architecture trained in that paper obtain an NRMSE
of 0.548 and 0.409 respectively at the prediction horizon of
60. As we have seen, with our approach, we outperform these
architectures by reducing this error to 0.125 in the case of the
proposed MA-LSTM-MLP and starting from only one known
time step and predicting the 3,635 time steps of the test data.
As we can observe, the proposed architecture without Multi-
Head Attention (LSTM-MLP), both with and without TDL
buffer, as well as the NARX-NN baseline architecture, also
obtain less error, reinforcing our proposed iterative approach
using the no-TF training algorithm.

D. Dryer

The Dryer dataset consists of a set of data obtained from
real-world experiments. The description of the experiments as
well as the data are publicly available for download in the
DaISy repository on the website of Katholieke Universiteit
Leuven 1. The dryer dataset consists of a system with a single
input and a single output, obtained from a laboratory setup
acting as a hair dryer. The input is the voltage at the heating
device, which consists of a mesh of resistance wires. The
output is the air temperature, measured with a thermocouple.

In the previous benchmarks, we had a large number of
data and time steps, which is very beneficial for NN training,
whereas in this dataset, we have only 1000 time steps. This is
an interesting situation to study if the proposed architecture is
able to correctly model the system with limited data. We used
the first 500 time steps to train and validate the network, and
the last 500 for the test phase. During training, a prediction
horizon of 100 time steps has been set, where the first 400

1https://homes.esat.kuleuven.be/∼smc/daisy/index.html

https://homes.esat.kuleuven.be/~smc/daisy/index.html
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Fig. 6: Prediction and CAE of the MA-LSTM-MLP and baseline architecture for a random 600 time steps of the Industrial
Robot Benchmark test data. The MA-LSTM-MLP architecture outperforms the baseline with less error and more stability.

time steps have been used for training and the next 100 for
validation. During the test, the 500 time steps are predicted.

Again, to make fair comparisons between the proposed
architecture and the baseline, we have used the same hyper-
parameters related to training and the networks have the same
order of magnitude of parameters. To find the architecture-
related hyperparameters, a gridsearch was performed to fit the
baseline NARX-NN architecture. The hyperparameters found
were set for the MLP layers and the remaining hyperparame-
ters were optimized for the LSTM-MLP and MA-LSTM-MLP

architectures. The final hyperparameters, both those related to
training and architectures, together with the search spaces can
be found in Table VII. Adam has been used as optimizer.

Table VIII shows the RMSE obtained with the architectures
trained on the Dryer dataset. The RMSE shown is the error
obtained by predicting the 500 time steps of the test data.
The prediction is performed knowing only the state of the
dryer at the initial instant of the test data y0 and iterating
the architecture for each of the known external parameters
U0,T−1. We observe a trend similar to the previous examples.
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TABLE VII: Hyperparameters of the three architectures and their training configurations for the Dryer Dataset, including the
specific values explored during the grid search.

Architecture Hyperparameter Value Search Space

NARX-NN

TDL Buffer Size k 10 {1, 5, 10, 15}
MLP Hidden Layers L 3 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 256 {64, 128, 256, 512}

LSTM-MLP

TDL Buffer Size k 10 or 0 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 256 {64, 128, 256, 512}

LSTM Cells HL 64 {32, 64, 128, 256}

MA-LSTM-MLP

TDL Buffer Size k 10 or 0 {1, 5, 10, 15}
MLP Hidden Layers L 2 {1, 2, 3, 4}

MLP Activation σ ReLU {ReLU, Tanh, Sigmoid}
MLP Neurons HM 256 {64, 128, 256, 512}

LSTM Cells HL 64 {32, 64, 128, 256}
Heads h 4 {2, 4, 8}

Key Vector Dimension dk 8 {4, 8, 16, 32}

Training

Epochs e 200 {100, 200, 300}
Batch Size B 1 {1, 2}

Learning Rate η 1e-4 {1e-5, 1e-4, 1e-3}
Cost Function J MSE {MSE, R2}

Early Stop s 5 {3, 5, 10}
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Fig. 7: Prediction and CAE of the MA-LSTM-MLP and baseline architecture for the 500 time steps of the Dryer Test Dataset.
The MA-LSTM-MLP architecture outperforms the baseline with less error and more stability.

TABLE VIII: RMSE obtained in the Dryer Test Dataset
with different architectures. The proposed MA-LSTM-MLP
architecture outperforms the alternatives. The value in bold
shows the best result.

Architecture RMSE
NARX-NN, k = 10 (Baseline) 0.1392

LSTM-MLP, k = 0 0.1827
LSTM-MLP, k = 10 0.1164

MA-LSTM-MLP, k = 10 0.1102
RFS-LSSVR [29] 0.1130

The highest error is obtained using LSTM-MLP with k = 0,
showing that in this example it is also relevant to keep the TDL
buffers with the last estimated states of the system. The rest of
the architectures present the expected behavior. LSTM-MLP
with TDL buffers decreases the error obtained by the baseline.
The proposed MA-LSTM-MLP model again obtains less error
than the other alternatives.

In the state of the art a variation of a squares support
vector regression model is proposed for the identification and
modeling of dynamical systems [29], RFS-LSSVR. The main

feature of their proposal is the tolerance to outliers in the
input of the system. In the Dryer test dataset, RFS-LSSVR
without outliers obtains an RMSE of 0.1130, quite similar but
slightly higher than MA-LSTM-MLP. Being a small dataset,
it is difficult to lower the error further. Our proposal proves
to work well in these scenarios with limited data.

Fig. 7 shows the prediction of the MA-LSTM-MLP and
baseline architectures for the 500 time steps of the Dryer test
dataset, compared to the true system state Y . We can see that
both architectures model the system correctly. However, in
the baseline architecture we observe more noise and outliers
that disappear in the MA-LSTM-MLP prediction, where the
error is negligible. The CAE plot confirms these observations,
where we see that the proposed architecture is more robust and
obtains less error during the whole prediction horizon. In this
plot the baseline has higher CAE during the whole prediction
horizon and the difference increases with respect to the time
steps.
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TABLE IX: Computational cost of the architectures studied in the benchmarks. The number of parameters corresponds to the
weights and bias. Execution time corresponds to 100 iterations of the architectures using an NVIDIA Titan XP. Although
MA-LSTM-MLP has a more complex design, it is efficient in memory usage and computational cost.

Benchmark Architecture Parameters Time (ms)

Wiener-Hammerstein

NARX-NN, k = 10 35,841 302.29
LSTM-MLP, k = 0 42,113 342.32
LSTM-MLP, k = 10 46,721 356.32

MA-LSTM-MLP, k = 10 52,195 551.21

Industrial Robot

NARX-NN, k = 10 559,622 329.45
LSTM-MLP, k = 0 403,974 331.42
LSTM-MLP, k = 10 459,270 357.96

MA-LSTM-MLP, k = 10 530,514 566.04

Dryer

NARX-NN, k = 10 137,217 306.28
LSTM-MLP, k = 0 99,841 374.61
LSTM-MLP, k = 10 104,449 390.93

MA-LSTM-MLP, k = 10 109,923 564.51

TABLE X: Mean Absolute Error (MAE), Median of the Absolute Error (Med AE) and Standard Deviaton of the Absolute
Error (STD AE) of the proposed architectures in the three datasets studied. The metrics are obtained from the prediction of
the architectures of all time steps of the test data. In all cases, we observe how MA-LSTM-MLP outperforms the alternatives.
The values in bold show the best results.

Benchmark Architecture MAE Med AE STD AE

Wiener-Hammerstein

NARX-NN, k = 10 0.052 0.036 0.047
LSTM-MLP, k = 0 0.021 0.013 0.022
LSTM-MLP, k = 10 0.019 0.012 0.018

MA-LSTM-MLP, k = 10 0.017 0.008 0.017

Industrial Robot

NARX-NN, k = 10 14.90 8.97 17.65
LSTM-MLP, k = 0 13.98 8.38 16.23
LSTM-MLP, k = 10 12.33 7.21 14.65

MA-LSTM-MLP, k = 10 10.83 6.46 12.58

Dryer

NARX-NN, k = 10 0.125 0.111 0.089
LSTM-MLP, k = 0 0.144 0.115 0.111
LSTM-MLP, k = 10 0.109 0.104 0.071

MA-LSTM-MLP, k = 10 0.089 0.077 0.064

E. Computational Cost

We measured the time for the proposed architecture to
perform 100 iterations to estimate the computational cost
in the benchmarks. Table IX shows the execution time in
milliseconds for 100 iterations of all studied architectures.
Note that an iteration computes in parallel batch size B time
steps, one for each series. In addition, the table shows the
number of trainable parameters (weights and bias) that each
architecture has, in order to estimate the memory cost. The
architectures have the hyperparameters detailed in the sections
of each benchmark (Section IV-B, Section IV-C and Section
IV-D). Although MA-LSTM-MLP has a more complex design,
overall it is efficient in memory usage and computational cost.
All the architectures shown are efficient in computational cost,
since if we analyze the worst case (MA-LSTM-MLP on the
Industrial Robot Benchmak) we obtain that we predict 100
time steps in 566 ms. This is 5.66 ms per time step, or 176.67
Hz. All computational cost tests were performed using an
NVIDIA Titan XP graphics card.

F. Statistical Analysis

In the sections related to the results of the architectures
in the different datasets (Section IV-B, Section IV-C and
Section IV-D) only one metric is shown for each of the
architectures compared. The purpose of showing only one
metric in the results tables is to make comparisons in a simple
way, using the metric recommended by each of the datasets. In

this subsection we perform a more detailed statistical analysis
of the results obtained in each of the datasets with the different
architectures studied.

Table X shows Mean Absolute Error (MAE), Median of
the Absolute Error (Med AE) and Standard Deviation of the
Absolute Error (STD AE) of the proposed architectures in
the three datasets studied. The metrics are calculated from the
prediction of all time steps of the test datasets. We can observe
how the different parts of the proposed architecture improve
the results. The case of the baseline architecture (NARX-NN),
in all the benchmarks is improved by the hybrid alternative
in which we add LSTM layers, especially with LSTM-MLP
where k = 10. In addition, in all datasets we obtain the best
result by adding the attention layer, with our proposal MA-
LSTM-MLP.

In addition to the table with metrics related to the absolute
error, we present for each of the analyzed datasets a boxplot
with the error obtained by each architecture. Each architecture
predicts all the time steps of the test data. With the boxplots,
we can observe and compare the dispersion and range of the
error, as well as whether the error is symmetrical or has a
bias. It is also important to consider the Interquartile Range
(IQR). The length of the box shows the IQR, which represents
the middle 50% of the errors. A smaller IQR indicates less
variability in the errors, which is desirable.

Fig. 8 shows the boxplot of the error in the Wiener-
Hammerstein Benchmark. As can be seen, all alternatives
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Fig. 8: Boxplot of the error in the Wiener-Hammersrtein
Benchmark. All the architectures show a symmetric error, with
the median close to 0. It is observed that MA-LSTM-MLP
obtains a smaller IQR and smaller range of maximum and
minimum error values, demonstrating higher accuracy.
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Fig. 9: Boxplot of the error in the Industrial Robot Benchmark.
All the architectures show a symmetric error, with the median
close to 0. MA-LSTM-MLP obtains a smaller IQR and smaller
range of maximum and minimum error values, demonstrating
higher accuracy.

show a median close to 0, with a symmetrical error. Regarding
the IQR and the range of maximum and minimum values,
we observe the best results in the case of MA-LSTM-MLP,
obtaining smaller values than the alternatives. We can see
similar conclusions in Fig. 9, in the case of the Industrial
Robot Benchmark.

Fig. 10 shows the boxplot of the error in the Dryer test
dataset. In this case, the four alternatives show an error with a
positive bias. MA-LSTM-MLP is the best option, showing a
lower IQR and range of errors than the alternatives, and above
all with a median closer to 0.

G. Discussion

The results presented in the previous sections demonstrate
the effectiveness of the proposed RNN-based architecture in
simulating complex nonlinear dynamical systems. As initially
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Fig. 10: Boxplot of the error in the Dryer test dataset. All
architectures show a positively biased error. It is observed that
MA-LSTM-MLP obtains a lower IQR, with values closer to
0 than the alternatives, showing higher accuracy.

defined in the paper, the main requirement for the architectures
is that they should predict the behavior of a dynamical system
knowing only the initial state and any number of time steps
of external inputs. We have shown an architecture with an
iterative approach is well suited for this problem.

The first architecture shown is LSTM-MLP. This network is
similar to the baseline NARX-NN, to which we have added an
LSTM layer. In our experiments, this network shows signifi-
cant improvements with respect to the NARX-NN architecture,
obtaining less error and reducing the number of neurons and
parameters. This architecture is part of our final proposal, MA-
LSTM-MLP.

The proposed MA-LSTM-MLP architecture consistently
outperforms LSTM-MLP and NARX-NN on the Wiener-
Hammerstein Process Noise System [59], Industrial Robot
[62], and Dryer benchmarks. We propose this architecture
with the idea of exploiting information from TDL buffers that
store the latest external inputs and estimated system states.
The results highlight the effectiveness of integrating attention
mechanisms to capture complex temporal dependencies and
improve the modeling of dynamic systems.

The proposed architecture is computationally efficient. In
particular, with the iterative approach, the function of the
architectures at each iteration is to predict the state at the next
time step and not to compute all at once a large prediction
window as it would be in the case of a sequence-to-sequence
problem. All experiments shown in the paper are with a TDL
buffer size of 10, limiting the size of the input and output
data. The LSTM-MLP architecture reduces the number of
parameters with respect to the NARX-NN baseline, obtaining
better performance. Additionally, the Multi-Head Attention
layer does not add many parameters since the TDLs are limited
to size 10.

The real computational cost of these architectures is in
the training, since training with no-TF is computationally
more demanding than training with TF. However, training
with no-TF provide architectures that work well with the
iterative approach. We obtain architectures that practically
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do not lose accuracy over large prediction horizons (16,384
time steps in the case of the Wiener-Hammerstein Benchmark
and 3,635 in the case of the Industrial Robot Benchmark).
Training with TF optimizes the architectures for single time
step predictions, causing the error to increase greatly as we
increase the prediction horizon.

The generalization capacity of our architectures is shown in
their high performance in the tests, adapting to situations that
have not been observed during the training phase. This ability
of the architectures to generalize across different datasets and
adapt to unseen variations in the system dynamics is necessary
for real-world deployment.

V. CONCLUSION

In this paper, we have proposed an RNN architecture that
simulates complex nonlinear dynamical systems. Our goal
is to predict the behavior of the system knowing only the
initial state of the system and any number of time steps of
external inputs, being this number the prediction horizon of
the system. State-of-the-art solutions using RNN are limited
by fixed prediction horizons and the lack of novel approaches.

We propose the MA-LSTM-MLP architecture. This ar-
chitecture involves iterative state estimation, where in each
iteration only the next time step is calculated. This approach
works for large prediction horizons by training the architecture
with a no-TF approach.

Our hybrid MA-LSTM-MLP architecture combines LSTM
layers with MLP to capture long-term dependencies and
nonlinearities of the dynamical system. In addition, including a
Multi-head Attention layer allows exploiting information from
previous estimated states and external inputs, improving the
accuracy and stability. Our proposed architecture outperforms
the baseline NARX-NN architecture as well as different state-
of-the-art solutions in three public benchmarks.

Our study demonstrates the potential of using the MA-
LSTM-MLP architecture in simulating nonlinear dynamical
systems. In view of the good performance of the proposed
architecture on datasets with real-world data, we consider as
future work to implement this architecture in real-world ap-
plications, thus addressing modeling, identification and control
of systems in practical environments.
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de Souza, and J. F. Hübner, “Physics-informed neural nets for control
of dynamical systems,” Neurocomputing, vol. 579, p. 127419, 2024.

[5] T. O. Kehinde, F. T. S. Chan, and S. H. Chung, “Scientometric review
and analysis of recent approaches to stock market forecasting: Two
decades survey,” Expert Systems with Applications, vol. 213, p. 119299,
2023.

[6] A. T. Oyewole, O. B. Adeoye, W. A. Addy, C. C. Okoye, O. C.
Ofodile, and C. E. Ugochukwu, “Predicting stock market movements
using Neural Networks: A review and application study,” Computer
Science & IT Research Journal, vol. 5, no. 3, pp. 651–670, 2024.

[7] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate
medium-range global weather forecasting with 3D neural networks,”
Nature, vol. 619, no. 7970, pp. 533–538, Jul. 2023.

[8] L. Chen, X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li, “FuXi:
a cascade machine learning forecasting system for 15-day global weather
forecast,” npj Climate and Atmospheric Science, vol. 6, no. 1, pp. 1–11,
2023.

[9] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” Expert Systems with Applications, vol. 207, p. 117921, 2022.

[10] K.-H. N. Bui, J. Cho, and H. Yi, “Spatial-temporal graph neural network
for traffic forecasting: An overview and open research issues,” Applied
Intelligence, vol. 52, no. 3, pp. 2763–2774, 2022.

[11] S. K. Nayak, A. Bit, A. Dey, B. Mohapatra, and K. Pal, “A Review on
the Nonlinear Dynamical System Analysis of Electrocardiogram Signal,”
Journal of Healthcare Engineering, vol. 2018, no. 1, p. 6920420, 2018.

[12] P. M. Datilo, Z. Ismail, and J. Dare, “A Review of Epidemic Forecasting
Using Artificial Neural Networks,” Epidemiology and Health System
Journal, vol. 6, no. 3, pp. 132–143, 2019.

[13] C. Legaard, T. Schranz, G. Schweiger, J. Drgoňa, B. Falay, C. Gomes,
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